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Circuits and Systems Expositions 

On the Application of Thevenin and Norton 
Equivalent Circuits and Signal Flow Graphs to 
the Small-Signal Analysis of Active Circuits 

W. Marshall Leach, Jr., Senior Member, IEEE 

Abstruct- Small-signal Thevenin and Norton equivalent cir- 
cuits seen looking into each terminal of the BJT and the FET 
are described. The application of these! circuits to writing by 
inspection the expressions for gain, input resistance, and output 
resistance of multistage amplifiers is demonstrated. The applica- 
tion of the circuits to the noise analysis of devices is illustrated 
by the calculation of the noise input voltage and current of the 
BJT and the noise input voltage of the MOSFET. The circuits 
are useful for the analysis of feedback amplifiers where Mason’s 
signal flow graph can he used to solve the simultaneous equations 
that are obtained. Several examples are presented which illustrate 
flow-graph solutions for feedback circuits. 

I. INTRODUCTION 

HE SMALL-SIGNAL analysis of electronic circuits is T traditionally performed by replacing all active devices in 
the circuit with a small-signal model. Loop or node equations 
are then written and solved for the desired gain or impedance. 
Commonly used small-signal models for the bipolar-junction 
transistor (BJT) are the h-parameter (or hybrid) model, the T 
model, and the hybrid-r model. The latter two models are also 
used for the field-effect transistor (FET). 

In circuits containing no more than one transistor, the 
analysis is usually straightforward if rio more than one input 
loop is present. If this is not the case, a Thevenin equivalent 
circuit can usually be made to reduce this number to one. 
In circuits containing more than one transistor, the analysis 
can become complicated when multiloop circuits must be 
solved. This paper presents a systematic method by which this 
process can be simplified. The method is based on making 
Thevenin and Norton equivalent circuits looking into and out 
of each active device port. Once this is done, the circuit 
solutions can usually be written by inspection. To illustrate 
the procedure, several examples are given. Another useful 
application is the noise analysis of devices. This is illustrated 
with the calculation of the noise input voltage and current of 
the BJT and the noise input voltage of the MOSFET. Although 
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the analysis is restricted to low-frequencies, the methods can 
be extended to include frequency response effects. 

Feedback circuits are a special case. Several examples 
are presented to illustrate how solutions can be written by 
inspection when Mason’s signal flow graph [1]-[4] is used to 
represent the equations. A major problem in the application of 
flow graphs to electronic circuit analysis can be the modeling 
of loading effects between stages in a circuit. When this 
becomes a problem here, it is circumvented by formulating the 
flow-graph path gains in terms of the Thevenin input voltage 
or the Norton input current to a stage rather than in terms of 
the actual input voltage or current. In this way, loading effects 
can be accounted for in the path gains of the flow graph. 

Contemporary computer technology has had a profound 
effect on circuit analysis and design. A user with little un- 
derstanding of the operation of a circuit can write the node 
equations and use a software tool to solve the resulting matrix. 
This might lead some to believe that the traditional discipline 
of circuit analysis is superfluous. However, computers do 
not design circuits, engineers do. The traditional analysis 
of a circuit provides an insight into its operation that can 
probably never be provided solely by a computer. Only after 
the serious student has mastered the traditional approaches of 
circuit analysis is he or she qualified to use computer tools 
to facilitate design. The methods of analysis presented in this 
paper are based on traditional approaches. It is believed that 
such methods lead to a better fundamental understanding of 
circuit operation. 

11. THE SMALL-SIGNAL EQUIVALENT CIRCUITS 
The small-signal T models of the BJT and the MOSFET 

are used in this section to develop the small-signal Thevenin 
and Norton equivalent circuits seen looking into each device 
terminal. Fig. l(a) shows the low-frequency T model of the 
BJT with external Thevenin sources connected to the base 
and emitter inputs. The external collector circuit is not shown. 
The intrinsic emitter resistance is given by T,  = VT/IE> 
where I ,  is the emitter bias current and VT is the thermal 
voltage. The collector-to-emitter resistance is given by r0 = 
(VCB + VA)/I~, where VCB is the collector-to-base bias, 
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Fig. 1. (a) T model of BJT with Thevenin sources connected to base and 
emitter. (b) Thevenin equivalent circuit seen looking into base. (c) Thevenin 
equivalent circuit seen looking into emitter. (d) Norton equivalent circuit seen 
looking into collector. 

voltage, VA is the Early voltage, and IC is the collector bias 
current. The currents are related by i’, = , B i b  = ai;, where 
,B = a / (1  - a) .  Unless stated otherwise, it will be assumed 
that the current io through r, can be neglected except when 
calculating the resistance seen looking into the collector, i.e., 
the collector output resistance. 

The base voltage in Fig. l(a) is given by V b  = ibr, + i’,r, + 
ieRt, + vte. When io is neglected, the currents are related by 

a function of ab and ut, to obtain V b  = a b r i b  + ut,, where 
r,b is the small-signal resistance seen looking into the base 
given by (1). It follows that the Thevenin equivalent circuit 
seen looking into the base consists of the resistor rib in series 
with the voltage ut,. The circuit is shown in Fig. l(b). The 
emitter voltage is given by v, = vtb - ib(Rtb + r,) - ZLr,. 
When io  is neglected, v, can be expressed as a function of 
‘Utb and i ,  to obtain ve = V t b  - i,r;,, where r,, is the small- 
signal resistance seen looking into the emitter given by (2). 
It follows that the Thevenin equivalent circuit seen looking 
into the emitter consists of the resistor r;, in series with the 
voltage v t b .  The circuit is shown in Fig. l(c). 

i ,  = i‘ , 1 (1 + P ) i b .  It follows that vb can be expressed as 

rib = rx f (1 + p)(re f &e) 

The short-circuit collector output current ic(sc) is solved for 
with v, = 0. When io  is neglected, the current relations are 
i,(,,, = i:, i b  = iL//3, and i, = i ’ , / ~ .  With the aid of these 
relations, the base-to-emitter loop equation is ‘Utb - vte = 
(i:/,B)(Rtb + r,) + (iL/a)(r, + Rt,). This equation can be 
solved for z’, to obtain (3 )  where G, is a transconductance 
given by (4). 

(3) 2: = Gm(Vtb - U t e )  

Altemate and useful relations for the transconductance G, are 

(5 )  

With vtb = ute = 0, the collector output resistance is given 
by ri, = vc/i,. To solve for this, the circuit seen looking up 

Fig. 2. (a) T model of MOSFET with Thevenin sources connected to gate 
and source. (b) Thevenin equivalent circuit seen lookng into source. (c) 
Norton equivalent circuit seen looking into drain. 

into re from the emitter node in Fig. l(a) can be replaced by 
the resistor r,, given by (2) to signal ground. The collector 
voltage can then be written v, = io(ro + ri, 1 1  Rte) ,  where 
io = i, - ai’, and i‘, = -ioRt,/(rie + Rt,). These equations 
can be solved for r,, to obtain 

where the first relation in ( 5 )  has been used in the denominator. 
The Norton equivalent circuit seen looking into the collector 
consists of the current 2: given by (3) in parallel with the 
resistor r,,. The circuit is given in Fig. l(d). Note the effect 
of positive feedback in (6) which predicts that rtc + 00 if 

Fig. 2(a) shows the low-frequency T model of the MOSFET 
with Thevenin sources connected to the gate and source inputs. 
The external drain circuit is not shown. In MOSFET circuits, 
the body (or bulk) is usually connected either to the source or 
to signal ground. Fig. 2(a) shows the body connected to signal 
ground. In the following, it is shown how the equations derived 
for this connection can be modified for the case where the body 
is connected to the source. The MOSFET transconductances 
are given by g, = 2 m  and gmb = Xg,, where K is 
the transconductance parameter, ID is the drain bias current, 
and x is the rate of change of threshold voltage with source- 
to-body voltage. The transconductance parameter is given by 
K = Ko(1 + AV’s), where VDS is the drain-to-source bias 
voltage, X is the channel length modulation parameter, and 
KO is the zero-bias value of K .  The small-signal drain-to- 
source resistance is given by Tds = (VDS + ~/X)/ID. The 
parameter x is referred to here as the transconductance ratio. 
It is given by x = 0.5y/d-, where y is the body 
threshold parameter, @ is the surface potential, and VSB is the 
source-to-body bias voltage. Unless stated otherwise, it will 
be assumed that the current io through rdS can be neglected 
except when calculating the resistance seen looking into the 
drain, i.e., the drain output resistance. 

For the case x = 0, the branch in Fig. 2(a) with resistance 
l/g,a becomes open circuited. In this case, the circuit reduces 
to the T model for the case where the body is connected to the 
source. It follows that any equation derived from the circuit of 

G,Rt, + 1. 
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Fig. 3 .  Example three-stage amplifier. 

Fig. 2(a) can be converted into a corresponding equation for 
the case where the body is connected to the source simply by 
setting x = 0 in the equation. Because the T model for the 
JFET is the same as the T model for the MOSFET for the 
case where the body is connected to the source, the equations 
for the JFET are also obtained by setting x = 0. 

Because the FET gate current is zero, the equivalent circuit 
seen looking into the gate is an open circuit. The development 
of the small-signal Thevenin equivalent circuit seen looking 
into the source and the small-signal Nlorton equivalent circuit 
seen looking into the drain follow the derivations for the BJT 
and will not be given. The circuits are given in Fig. 2(b) and 
(c), where 

i& = G, (* -. ut.) 
I + X  

The approximations described above involving resistors r, 
and rds force the BJT and the FET to be unilateral devices. 
If the BJT emitter and the FET source are connected to signal 
ground, the circuits become exact. When this is not the case, 
the resulting error can be quite small. For example, it can be 
shown that the percent error in calculating ic(sc) for a BJT CE 
amplifier with IC = 1 mA, p = 100, R t b  = r,  = 0, Rt, = 1 
kR, and To = 10 kR is only 0.34% when the current through r, 
is neglected. For the CB amplifier with the same parameters, 
the percent error is 0.49%. The percent error in calculating 
i d ( s c )  for a MOSFET CS amplifier withi K = 0.001 AN2, x = 
0, Rt, = 1 kR, Tds = 30 kR, and 1, = 1 mA is 1.1% when 
the current through rds is neglected. 

The approximations involving r, and rdS can be avoided 
if these resistors are considered to be parts of the external 
circuits. In this case, the resistors do not appear in Figs. 1 and 
2 and the circuits must be analyzed, in general, as feedback 
circuits. In the examples given in the following, both methods 
for treating T, and Tds are illustrated. 

RC 1 i 

Fig. 4. Example differential amplifier. 

111. EXAMPLE ANALYSES OF CIRCUITS WITHOUT FEEDBACK 

Fig. 3 shows the signal circuit of a BJT cascode amplifier 
driving a common-collector stage. It is assumed that the dc 
bias currents and voltages are known. The collector output 
resistance for Q 1  is modeled as the external resistor r;,1 to 
signal ground given by (6), where R t b l  = RBI 1 1  RI and 
Rtel = REI .  The collector-to-emitter resistances of Q 2  and 
Q3 are shown as the external resistors r,2 and r,3. 

The Norton equivalent circuit seen looking into the collector 
of Q 2  consists of the current i c2 ( sc )  in parallel with the 
resistor r i c 2 ,  where r;,2 is given by (6) with R t b 2  = R B ~  and 
R t e 2  = y i C l .  The current ic2(sc) is calculated with the collector 
of QZ connected to signal ground. It is given by ic2(sc) = 
n 2 i k 2 + i o z .  Current divider relations can be used to write ik2 = 
iL1  ( c C 1  I I r i e 2  I I 7- ,d/r ie2 and i o 2  = ibl ( r i c i  I I r i e 2  I I ~ 0 2 ) / ~ 0 2 ,  
where iLl = G m l v t b l .  Note that a feedback loop through r,2 

is broken by solving for the short-circuit current i c2 ( sc )  rather 
than i , ~ .  (For an alternate solution, r,2 can be replaced by the 
resistor r;,2 from the collector of Q2 to signal ground. This 
approximation gives iC2(,,) = n 2 i L l ) .  

The Thevenin equivalent circuit seen looking out of the 
base of Q3 consists of the voltage Utb3  = -ic2(sc.(~ic2 1 1  R c 2 )  

in series with the resistance R t b 3  = r i C 2  ) I  R c ~ .  A Thevenin 
equivalent circuit looking into the emitter of Q 3  can be used 
to solve for U,. This is given by U, = V t b 3 ( T o 3  I I R E ~ ) / [ T ~ ~ J  + 

The voltage gain of the circuit can be written as the product 
To3 I I RE31. 

of terms 

- - - -_ x - x - x -  vo V t b l  iL1  i c2 ( sc )  Vtb3  2 
Ui vi V t b l  ~ c ~ ( s c )  U t b 3  

The input and output resistances are given by rin = RI t 
RBI ( 1  rib1 and Tout = r03 I(  RE^ 1 1  rte3. For an alternate: 
solution, v, /utb~ can be written V o / V t b 3  = (iL3/vtb3) x 

Rte3 = ro3 1 1  RES. When the first relation in (5)  is used for 
Gm3, this solution reduces to that given in (11). 

Fig. 4 shows the signal circuit of a BJT differential ampli- 
fier. The collector output resistances are modeled as external 

(iL3/i',3) x ( ~ o / i L 3 )  = Gm3 x (1/Q!3) x 1 1  RES),  where 
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Fig. 5. (a) Example common-drain amplifier. (b) Example cascode amplifier. 

resistors to signal ground. The Thevenin equivalent circuit 
seen looking into the emitter of Q 1  ( Q 2 )  consists of the 
voltage v i 1  (viz) in series with the resistance riel (rie2), where 
riel ( r i e 2 )  is calculated with R t b l  = R1 ( R t b 2  = R 2 ) .  Super- 
position can be used to solve for the emitter current in Q1 
to obtain 

vi 1 iel = 
riel + REI + RT I (  ( R E 2  + r i e 2 )  

v i 2  - 

T ie2  +  RE^ + RT 1 1  (REI  riel) 

where the latter term is a current-divider ratio. The emitter 
current in Q2 is obtained by interchanging the subscripts 1 
and 2 in this equation. The collector current in Q 1  ( Q 2 )  is 
given by = aliel (iL2 = a 2 i e 2 ) .  To calculate the collector 
output resistances riC1 and T;,Z from (6), it is necessary to 
specify Rtel and R t e 2 .  These are given by Rtel = REI + 
RT ( 1   RE^ + r i e 2 )  and R t e 2  =  RE^ + RT 1 1  (REI  + riel). 

When the output is taken from the collector of Q l ,  the 
common-mode rejection ratio (CMRR) caused by a noninfinite 
tail resistance can be expressed as the ratio i ~ l ( d ) / z ~ l ( c m ) ,  
where iLl(dl is calculated with v i 1  = -vi2 = v i / 2  and 
iLl(cm) is calculated with v i 1  = vi2 = wi. For the case 
r;,1 = r i e 2  = rie, it follows that the CMRR is given by 

Fig. 5(a) shows the signal circuit of a MOSFET common- 
drain output amplifier [5].  The drain-to-source resistance 
of each MOSFET is modeled as an external resistor. The 
Thevenin equivalent circuit seen looking into the source of 
MI consists of the voltage v i / ( l  + X I )  in series with the 
resistance ~ ; , 1  = l / [ ( l  + x l ) g m l ] .  The voltage gain can be 
written by inspection to obtain 

(14) 

where the latter term is a voltage-divider ratio. The output 
resistance is given by Tout = T d s l  1 1  r d s 2  1 1  risl. No approxi- 
mations have been used in the analysis. 

1 r d s l  1 1  Tds2 
X - - _ _  - 

vi 1 + x 1  Tis1 + rdsl  1 1  r d s 2  

V t 2  R2 P 
B M  I+ 

I 
E 

(a) (b) 

Fig. 6 .  
r; is a noiseless resistor. 

(a) BJT with noise sources. (b) V, - I , ,  noise model of BJT, where 

Fig. 5(b) shows the signal circuit of a MOSFET cascode 
amplifier [5].  The drain-to-source resistance of each MOSFET 
is modeled as an external resistor. The current iL1 is given by 
iL1 = gml v i .  The small-signal resistance to signal ground seen 
looking into the source of Adz is riS2 = l / [ ( l + x 2 ) g m 2 ] .  With 
v, = 0, the short circuit output current io(sc) is the fraction of 

which flows in the resistance r i s 2  1 )  Tds2. The expression 
for io(sc) is 

T d s l  

T d s l  + T i s 2  1 )  rds2 
b ( , c )  = Qml'Ui 

where the latter term is a current divider ratio. The output 
resistance is given by rout = rds3  1 1  Ti&,  where r i d 2  is given 
by (10) with R t s 2  = rdsl .  The voltage gain of the circuit is 
given by 

No approximations have been used in the analysis. 

IV. EXAMPLE NOISE ANALYSES 
Fig. 6(a) shows a BJT with Thevenin sources connected 

to the base and emitter and all noise sources modeled as 
external sources [6]-[9]. The base spreading resistance T,  and 
the collector output resistance r;, are modeled as external 
resistors. The sources v t l ,  vt2, and vtz, respectively, model 
thermal noise generated by R I ,  R 2 ,  and r,. The source 
z shb  + i f  b models shot noise and flicker noise in the base bias 
Current I,. The source i shc  models shot noise in the collector 
bias current IC. The mean-square values of the noise sources 
are given by vt", = 4kTrzA f ,  I:hc = 2 q I ~ A f ,  I& = 
2 q I ~ A f ,  and I;b = K f I B A f / f ,  where k is Boltzmann's 
constant, T is the absolute temperature, Af is the bandwidth 
in Hz, q is the electronic charge, K f  is the flicker noise 
coefficient, and f is the frequency. 

The resistor T, is first moved to the right in Fig. 6(a) until 
it is at the position indicated by the X .  For the equations to 
remain unchanged, the value of the source ut, must be changed 
to ut, + (z&b + zfb)r,. From the circuit obtained, it follows 
that v t b  = 211 + 'Ut1 + ut, + ( i s h b  + i f b ) ( R i  + r 2 ,  ) R t b =  
R I ,  U t e  = U2 + U t 2  -I- ( i shc  - i shb  - i f b ) R z ,  and R t e  = 122.  
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Fig. 7. (a) MOSFET with noise sources. (b) Vn noise model of MOSFET. 

The short circuit collector output curreint is given by ic(sc) = 
i shc  + G m ( W t b  - u t e )  = G m ( v l  - v2 + uni), where vni is 
the noise input voltage in series with either u1 or v2 which 
generates the same noise in zc(sc-. This is given by 

vni ut1 - ut2 + V t x  + ( i s h b  + i f b ) ( R 1  f T x  f R2) 

f i s h c  + 5). cy (17) 
( R 1  7 + R2 

The above equation is of the form u,i = (Utl - vt2) + 
v, + &(RI + T,  + R2), where v, == ut, + ishcre/cy and 

to be independent, it follows that the ]mean-square values of 
U, and i, are given by 

2, = i s h b  + i f b  -k i s h c / / ? .  If U t x r  i & b ,  and i s h c  are assumed 

where the symbols (.) denote a time average. The correlation 
coefficient between U, and i, is given. by 

The noise model of the BJT is given in Fig. 6(b). The base 
spreading resistance r i  is considered to1 be a noiseless resistor 
in this model. An alternate formulation moves r i  into the 
BJT. In this case, the expressions for V: and p are more 
complicated. 

Fig. 7(a) shows a MOSFET with Thevenin sources con- 
nected to the gate and source and all noise sources modeled 
as external sources [6]-[9]. The drain output resistance T;d 

is modeled as an external resistor. The analysis assumes the 
body is connected to signal ground. The transconductance 
ratio x can be set to zero for the case where the body is 
connected to the source. The sources vtl and vt2, respectively, 
model thermal noise generated by Rl and R2. The source 
ztd + if d models thermal noise and flicker noise generated in 
the channel. The mean-squared values of the noise sources are 
given by I,”d = 8 k T g m A  f /3 and I;d =I K f I o A  f / ( fL2Cox) ,  
where K f  is the flicker noise coefficient, L is the effective 
channel length, and Cox is the gate oxide capacitance per unit 
area. 

V .  I 

r. in 

Fig. 8. Example series-shunt feedback amplifier. 

It follows from Fig. 7(a) that wtg = u1 + v t l ,  Rt, = 

short circuit drain current is given by i d ( s c )  = i t d  + i f d  + 
G m [ v t g / ( l  + x )  - uts]. This can be rewritten 

R I ,  vts = U 2  ut2 + ( i t d  + i f d ) R 2 ,  and Rts = R a .  The 

It can be seen that the noise input voltage in series with v1 is 
different from the noise input voltage in series with 212 unless 
x = 0, or equivalently the body is connected to the source. 
If the noise is reflected to the gate, the noise input voltage 
is given by 

This equation is of the form wni = vtl - v t 2 ( l  + x )  + v,, 
where u, = ( i t d  + i f d ) / g m .  If i t d  and i f d  are assumed to be 
independent, the mean-square value of w, is given by 

The noise model for the MOSFET is given in Fig. 7(b). 

v. EXAMPLE ANALYSES OF CIRCUITS WITH FEEDBACK 

When the methods described above are applied to feedback 
amplifiers, simultaneous equations are obtained. Mason’s sig- 
nal flow graph is a useful tool in solving such equations. The 
general expression for the transmission gain T from any source 
node in a flow graph to any nonsource node is [3] 

(24) 
1 T = - C P ~ A ~  
a k  

where Pk is the gain of the kth forward path, A is the 
determinant of the graph, and A, is the determinant of that 
part of the graph not touching the kth forward path. The 
determinant is given by 

r 1 

where L g )  is the product of the loop gains of the mth possible 
combination of r nontouching loops. 

Fig. 8 shows the signal circuit of a BJT series-shunt feed- 
back amplifier. The collector output resistances for &I and 
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‘ e l  
Fig. 9. Flow graph for series-shunt amplifier. 

Q 2  are modeled as external resistors to signal ground. The 
following equations can be written 

vo = (iL + io) [ ~ i c z  1 1  Rc2 I (  (RF + R E I ) ]  

261 = iLi/Pl (30) 

where & h i  = R I ,  Rtei = REI I /  R F ,  Rth2 = Tac1 1 1  R C I ,  and 
Rte2 =  RE^. The minus sign precedes Gm2 in (27) because 
i12 is labeled flowing out of the collector of a PNP transistor. 
Note that every unknown is defined by an equation, where U, 
and io  are considered to be independent variables. 

A possible point of confusion in writing the equations is the 
determination of Rtb and Rte. In Fig. 8, for example, Rtbl is 
clearly equal to RI .  However, Rtel is not so clear. The correct 
value for Rtel is obtained by setting to zero all variables 
used in the superposition for ‘Ute’ .  It follows from (29) that 
w, is set equal to zero so that Rtel = REI 1 1  RF.  An alternate 
solution is to write ute] = iL2R~1(r,,2 1 1   REI + RF + 
r,,z 1 1  R c ~ ) .  In this case, Rtel = REI I I  (RF + T,,Z I1 R c ~ ) .  
This solution has not been used here because it leads to a 
loop-gain transfer function that is not in the standard form for 
the shunt sampling topology. In summary, the variables used 
in the superposition for U t 6  and vte are set to zero in solving 
for Rtb and Rt,. 

Fig. 9 shows the flow graph for the equations. There are 
two forward paths from U, to U,, one forward path from U, 

to i b l ,  one forward path from io to U,, and two loops which 
touch. All forward paths touch both loops so that A, = 1 for 
each forward path. The determinant is given by 

I I 
Fig. 10. MOSFET Wilson current mirror. 

The voltage gain, input resistance and output resistance can be 
written by inspection from the flow graph to obtain 

where the second expression in (5 )  has been used in (33). 
The determinant corresponds to what is commonly called the 
“amount of feedback” [lo]. The gain is decreased by the 
amount of feedback, the input resistance is increased by the 
amount of feedback, and the output resistance is decreased by 
the amount of feedback. These are well-known properties of 
the series-shunt feedback topology. 

Fig. 10 shows the signal circuit of a MOSFET Wilson 
current mirror [5].  The drain-to-source resistance of each 
MOSFET is modeled as an external resistor. The Thevenin 
equivalent circuit seen looking out of the source of A41 
consists of the voltage vtsl = i o ( ~ d s 2  1 1  riS2) in series with 
the resistance Rtsl = TdS2 1 1  ris2, where r,,2 = l/gm2. The 
output resistance is given by r id l  = udl /idl. To solve for this, 
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Fig. 13. Flow graph for BJT with series sampling negative feedback. Fig. 11. Flow graph for MOSFET Wilson current mirror. 

-Rmie 

r03 

(a) (b) 

Fig. 12. 
current mirror. 

(a) BJT with series sampling negative feedback. (b) BJT Wilson 

Fig. 14. Example amplifier with shunt-series and series-shunt feedback. 

the following equations can be written1 

. .  
(35) 

(36) 

where G,1 is given by (9). The flow graph for the equations 
is given in Fig. 11. There is only one loop. There are three 
forward paths from id1 to 'U&, two which touch the loop and 
one of which does not touch the loop. Thus Ak = A for the 
latter path. The determinant is given by 

The output resistance can be written by inspection from the 
flow graph to obtain 

No approximations have been made in the analysis. 
Fig. 12(a) shows the signal equivalent circuit of a BJT stage 

that occurs commonly in series-sampling feedback amplifiers. 
Feedback is modeled by the voltage source -Rmi,, where 
R, is a transresistance gain. The output resistance is given 

by r;, = w c / i c .  Following the derivation of (6), the following 
equations can be written 

io = i, - ail, (42) 

2 ,  = io + i:. (44) 
The flow graph is shown in Fig. 13. There are three touching 

loops. The determinant is given by 

(45) 

where the first relation in (5) has been used in the simplifica- 
tion. There are three forward paths from i, to w,, one which 
touches two loops and two which touch all three loops. The 
output resistance is given by 

aRm I - Rm + [ Tie  aRte + Rte T i e  + Rte Tie  + Rte 
A = 1 -  

= 1 - Gm(Rte - Rm/p) 

where A1 = 1 + Rm/(rie + Rte). It is straightforward to 
show that (46) reduces to 

(47) 
ro( 1 + GmRm/a) + T i e  I I R t e  

1 - Gm(Rte - Rm/P) 
Tic  = 
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Fig. 15. Flow 

' e2  - 1 ' c 2  
a2 

graph for amplifier with shunt-series and series-shunt feedback. 

If R, = 0, this reduces to (6) .  No approximations have been 
made in the analysis. 

Fig. 12(b) shows the signal circuit of a BJT Wilson current 
mirror. Q2 is connected as a diode and has the small-signal 
resistance T,,Z = [ ~ , 2 / ( 1  + P 2 )  + T,Z] 1 1  T,Z. The output 
resistance of the mirror is given by (47) with r,, G,, a ,  rZe, 
and Rt, evaluated for Q1, where Rtbl = RI / I  T,Q, Rtel = 

lated with iel = O), and Rte3 = 0. If R t b 1  -+ CO,  T,I = ' rX2  = 
r,3 = 0, reg = r,2, r,2 4 CO, and P1 = 02 = P3 = P, it 
follows that GmlR, -+ ,B2/(2 + p)  and (47) reduces to 

rCe2 I I rib31 Rm = ~ c e ~ G m 3 ( R 1  I I r o 3 ) ,  Rtb3 = ~ c e 2  (CdCU- 

This is a well-known result for the Wilson mirror [6]. 
Fig. 14 shows a circuit with both series-shunt and shunt- 

series feedback [ll]. The signal source is represented as 
a Norton equivalent. To simplify the equations, it will be 
assumed that T, = 00 for each BJT. The circuit equations are 

210 = ( i o  - &)[Rcz 1 1  (RFI  + RE111 

(49) 

The flow graph for the equations is shown in Fig. 15. The 
graph has six loops. The loop gains are given by 

(56)  

(57) 

1 
L1 = -Gml- [Rl 1 )  ( R F 2  + & 2 ) ]  

P1 

GmlREl 
X 

1 
ai REI + RFI  + Rc2 RFI  + REI 

L2 = _ _  x RE1RC2 

There is one combination of two nontouching loops L2 and 
L4. The determinant is given by 

A = 1 - (Li + L2 + L3 + L4 + L5 + LG) + L2L4. (62) 

There are three forward paths from ii to v,, each of which 
touches all six loops. Therefore, A, = 1 for each path. The 
transresistance gain is given by 

1 vo - - 
2; a - - 

set to zero to solve for R t b l .  Also, vte2 in (50) is expressed as 
a function of Vb1 so that Vb1 is set to zero to solve for Rte2. 

There is only one path from z, to v, and it touches three of the 
six loops. The Ak for this path is A, = 1 - (L1 + L4 + L5). 
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The output resistance is given by 

vo 
S O  

1 - (L1+ L4 + L5) 
[Rc2 I I  ( R F 1  + RE1)I.  a rout = - = 

(64) 
There is one path from z, to Wb1 which touches four of the 
six loops. The Ak for this path is Ak = 1 - ( L 2  + L3). The 
input resistance is given by 

If R F ~  00, the circuit becomes a familiar shunt-series 
feedback amplifier. In this case, L2 = L3 = L6 = 0 and the 
expression for A is simplified a great deal. For the shunt-series 
topology, the circuit gain is commonly expressed as a current 
gain, where the output current is i c 2 ,  i.e., the current in Rc2. 
For R F ~  -+ 00, the current gain is given by 

The resistance seen looking into the collector of Q 2  is infinite 
because of the assumption that r,z = 00. For r,2 < 00 and 
R F ~  + 00, r;,2 can be calculated from (47). In this case, 
Gm2 and r,,2 in (47) must be calculated with R t b 2  = Re1 
and Rte2 =  RE^ 1 1  [ R F ~ + ( R ~  I I T ; ~ I ) ] ,  where r i b l  is calculated 
with Riel = REI .  The expression for R, in (47) is 

where Gml and are calculated with Rtbl = 0 and 
&el = RE1.  

VI. CONCLUSION 
The expressions for the small-signal gain, input resistance, 

and output resistance of active circuits can often be written by 
inspection if the small-signal Thevenin and Norton equivalent 

circuits seen looking into each terminal of the active devices 
are known. These circuits can also be used to simplify the 
noise analysis of active devices. In the analysis of circuits with 
feedback, simultaneous equations must be solved. Mason’s 
signal flow graph is a convenient tool for obtaining the 
solution. 
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